
A LiveCoMS Tutorial

Quantifying Spatially Resolved
Hydration Thermodynamics Using
Grid Inhomogeneous Solvation
Theory [Article v1.0]
Valentin J. Egger-Hoerschinger1†, Franz Waibl1†, Vjay Molino2, Helmut Carter3,
Monica L. Fernández-Quintero1, Steven Ramsey7, Daniel R. Roe5, Klaus R. Liedl1*,
Michael K. Gilson4*, Tom Kurtzman6,7*

1Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck,

Austria; 2Ph.D. Program in Biochemistry, The Graduate Center of the City University of

New York, New York, USA 10016; 3Ph.D. Program in Biology, The Graduate Center of the

City University of New York, New York, USA 10016; 4Skaggs School of Pharmacy and

Pharmaceutical Sciences, University of California, San Diego, USA; 5Laboratory of

Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of

Health, Bethesda, Maryland, USA; 6Ph.D. Programs in Biochemistry, Chemistry, and

Biology, The Graduate Center of the City University of New York, New York, USA 10016;

7Department of Chemistry, Lehman College, The City University of New York, Bronx,

New York, USA 10468

This LiveCoMS document is

maintained online on

GitHub at https://github.
com/ liedllab/gist-tutorial ;
to provide feedback,

suggestions, or help

improve it, please visit the

GitHub repository and

participate via the issue

tracker.

This version dated August

14, 2025

Abstract Grid Inhomogeneous Solvation Theory (GIST) is a method to compute the free energy

of solvation of a solute molecule on a three-dimensional grid based on sampling from molecular

dynamics (MD) simulations. The high spatial resolution of the GIST output, as well as the decompo-

sition into energy and entropy contributions, allow for highly detailed analyses of solvation around

both proteins and small molecules. However, this versatility also comeswith a significant entry bar-

rier for new users.

In this tutorial, we aim to guide the reader through the most common steps involved in a GIST

analysis using the streptavidin-biotin complex as a demonstrative system. To this end, Jupyter

notebooks and a Python package (gisttools) are provided to simplify the analysis. Furthermore,

we discuss the theory of GIST with a focus on practical aspects. We highlight potential pitfalls and

provide strategies to avoid technical difficulties. This tutorial assumes familiarity with molecular

dynamics simulations and the AmberTools package.
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Figure 1. Schematic showing regions of high water density around

a carbazole solute molecule. Based on an MD simulation of solvent

around the solute molecule, the energy is computed from the inter-

molecular interactions of a force field, while the entropy is approx-

imated from the 6-dimensional orientational and translational sol-

vent distribution ρ around the solute molecule. Note that while this

depiction focuses on regions of high solvent density, regions with

lower density can also contain meaningful contributions to the over-

all energy and entropy.

1 Introduction
Solvation thermodynamics play a central role in many bio-

logical and chemical processes, particularly those involving

aqueous solutions, hydrophobic effects, and partitioning

between environments. Water is especially important, as

most biological processes occur in aqueous conditions. The

thermodynamics of solvation govern aqueous solubility

and hydrophobic effects, which in turn influence numerous

biological functions including ligand binding, protein fold-

ing, and the physical properties of cell membranes. Grid

inhomogeneous solvation theory (GIST) [1] is a method to

compute the free energy of solvation, with applications

in the context of drug design and biophysical property

description. It computes the solvent density from an MD

trajectory and estimates localized entropic and energetic

contributions on a grid around the solute molecule. Since

these contributions are spatially resolved, GIST improves

interpretability and offers more detailed insights into the

solvation of the investigated solute. A schematic of this is

shown in Figure 1. The energetic contributions are com-

puted from the intermolecular interactions of the solvent

with the solute as well as between solvent molecules. As

they are derived from the force field, pairwise additivity of

the underlying intermolecular interactions is assumed. The

entropy is computed from orientational and translational

distributions of the solvent around the solute molecule, in

a first-order approximation. The calculation of higher-order

entropy terms is computationally demanding but was re-

alized in recent works [2, 3]. However, it has been found

that solvation free energies of small molecule solutes can

be computed at high accuracy using linear scaling factors

for the higher-order terms. A common approximation is to

scale the first-order entropy, for example, ΔS = 0.6ΔS
1st-order

for water [4, 5]. Since its initial development, GIST has been

used to describe the thermodynamics of water displace-

ment in protein binding pockets [2, 6–8]. It has been used

for a large-scale investigation of the hydration properties

of proteins found in SARS-CoV-2 [9]. Furthermore, recent

works used GIST to describe biophysical properties of serine

proteases [10], macrocycles [11], or antibody fragments

[12].

GIST has been implemented on the GPU, substantially im-

proving its performance for large grids [10]. Furthermore,

an implementation based on the particle mesh Ewald (PME)

[13]method improves both the efficiency and the agreement

with popular molecular dynamics engines [4]. Other exten-

sions of GIST allow the inclusion of rigid solvents other than

water [5, 14] or the use of salt-water mixtures as solvents [3].

In this tutorial, we aim to give the reader an introduction

to GIST and its application to calculate solution thermody-

namics properties of interest. While previous publications

[6] and tutorials [15] treated how to set up and run GIST cal-

culations in detail, the post-processing was often treated in

less detail. While building on these tutorials, we provide an

updated guide to calculating solvation properties using GIST

to address recent improvements. Furthermore, we aim to

establish best practices for the analysis and interpretation of

GIST calculations.

1.1 Comparison to other methods
A wide range of methods has been devised to compute the

free energy of hydration. Data-drivenmethods include QSPR

and UNIFAC [16, 17]. Polarizable continuum models (PCMs)

[18, 19] treat the solvent as a homogeneous phase that re-

acts to the electrostatic potential of the solute molecule [20].

Methods such as MM/PBSA or MM/GBSA [21, 22] combine

an implicit treatment of solvent electrostatics with structural

sampling of the solute molecule. They can quickly provide

results for a large number of structures [23].

On the other hand, explicit solvation methods model the sol-

vent using individual molecules. They are generally more ac-

curate than implicit methods, but require a statistical sam-

pling of the solvent conformations [24, 25]. Molecular dy-

namics (MD) simulations provide an accurate way of mod-

eling solvent packing in confined areas [26] and general hy-

drophobic effects [27].

The free energy of solvation can be calculated in a statisti-

cally rigorousway using alchemicalmethods [24, 28, 29] such

as free energy perturbation (FEP) [30] or thermodynamic in-

tegration (TI) [31]. However, these methods are unable to

provide a spatial interpretation of the results. Furthermore,
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splitting a free energy into energetic and entropic contribu-

tions is challenging [32].

Methods derived from statistical mechanics bridge this gap

by providing spatially resolved information. It is important

to note that while the total solvation free energy is a well-

defined thermodynamic quantity, its spatial decomposition

is not unique and depends on the theoretical framework[33].

Thesemethodsmost commonly are based on either the Orn-

stein–Zernike (OZ) equation, or [34] inhomogeneous fluid sol-

vation theory (IST) [35]. The most important example of OZ-

basedmethods is the reference interaction sitemodel (RISM)

[36] as well as its extension to three dimensions (3D-RISM)

[37]. These methods compute the atomic solvent distribu-

tions by self-consistently solving the OZ integral equation to

predict solvation thermodynamics.

Methods based on IST use a molecular solvent distri-

bution obtained from an MD simulation to compute the

free energy of hydration from its energetic and entropic

contributions, providing easier interpretability of the result-

ing distributions. Examples include grid inhomogeneous

solvation theory (GIST) [1, 6], WaterMap [38, 39], SSTMap

[40], STOW [41] and Solvaware [42]. The main limitation of

these methods is that the entropy is approximated through

an infinite expansion in terms of the density distribution.

Within GIST and other more recent methods, these entropy

contributions are calculated via a k-nearest neighbor (kNN)

approach. Due to the high computational effort required to

converge the higher order terms, the entropy expansion is

usually truncated after the first or, sometimes, the second

[2, 5] term, thereby introducing an error.

While there are approximations available to deal with

these problems, most notably the mutual information

expansion (MIE) and Maximum Information Spanning Tree

(MIST) approaches, they are not currently implemented in

GIST. Recent kNN implementations to calculate solvation

entropy further improve phase space sampling by relabeling

the solvent molecules in the simulation, treating the solvent

molecules as distinguishable [43–46]. For a recent review of

kNN methods to calculate entropy in a molecular context,

see [47]. Furthermore, IST does not consider the internal

degrees of freedom of the solvent. Therefore, IST-based

approaches currently can only be used with sufficiently

rigid solvents, although a recent paper provides the theory

needed to generalize to flexible solvent molecules [48].

Nevertheless, they have been applied to a wide variety of

problems involving both small molecules and biological

systems as solutes.

GIST is an implementation of IST on a three-dimensional grid.

Unlike the related method, WaterMap [38, 39], it provides

solvation thermodynamics on an entire grid, rather than

only high-density clusters in a binding pocket. This implies

a higher versatility, but also puts more responsibility on the

user in terms of correct post-processing. Since the density

is computed from an explicit solvent MD simulation, GIST

provides an accurate picture of solvation at an atomistic

level, even for demanding systems such as drug binding

sites in proteins. While all MD simulations require a large

computational cost, GIST is more efficient than end-state

approaches such as TI [31] or FEP [30], with applications

to large systems such as serine proteases [10] or antibody

fragments [12]. On the other hand, the first-order approx-

imation means that the solvation entropy is less accurately

described than in TI or FEP [3, 4].

Similar to the self-consistent integral theories, GIST

only considers a single solute conformation and multiple

computations of representative structures are necessary to

describe ensemble properties.

Aside from the previously mentioned methods, there

is a large variety of other methods to compute energetic

and entropic contributions to the solvation free energy, as

recently reviewed [49, 50]. Approaches like SZMAP [51] trade

the accuracy of all-atom MD simulation for speed by using

a faster probe-based approach. SPAM ("maps" in reverse)

is more akin to WaterMap, investigating distinct hydration

sites based on high local water densities [52]. However,

it approximates the water entropies from the water inter-

action energy distributions. Another group of methods

builds on the cell theory for liquids [53], which derives

independent effective potentials for each molecule in its

neighbors’ mean field. Conceptually close to GIST is Grid Cell

Theory (GCT), which also adopts a grid-based approach but

differs in the assumptions made in its entropy calculations

[54]. More recently, Multiscale Cell Correlation (MCC) has

been developed, generalizing and pushing the method from

simple liquids up to large biomolecules [55–58].

1.2 Scope
The purpose of this tutorial is to help users run GIST calcu-

lations and interpret the results. The tutorial is structured

around two examples: a GIST calculation for the small

molecule biotin, and a GIST study of biotin-streptavidin

binding. Biotin is used as a simple example to introduce

the basics of GIST calculations, whereas the full biotin-

streptavidin analysis highlights details and considerations

relevant to more advanced GIST studies. We show how to

interpret the three-dimensional contributions of solvation

free energy in a binding pocket and around the ligand.

Additionally, we compute the contribution of solvation free

energy to binding, which requires accurate post-processing

of the GIST outputs to avoid unfavorable summation of

biases. In total, we aim to provide a workflow that can be

easily adapted to different systems, an introduction to the
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method and the theory behind it, and an overview of the

different implementations of GIST.

Furthermore, we discuss several technical aspects of GIST

studies, such as the normalization of voxel values. Addi-

tionally, we provide a Python library (gisttools) to unify

the analysis of GIST data produced by various versions of

GIST and to make the post-processing of GIST results more

accessible. After completing this tutorial, we expect the

reader to be able to run their own GIST study.

2 Prerequisites
2.1 Background knowledge
This tutorial is aimed at users with a solid knowledge of

molecular dynamics (MD) simulations.

Users should be able to run MD simulations and analyze the

resulting trajectories. The MD simulations presented in this

tutorial are run with the Amber simulation engine and ana-

lyzed using AmberTools cpptraj. For a conceptual overview
of running MD simulations with Amber, we recommend

reading the Ambermanual (https://ambermd.org/Manuals.php)
[59] and the Amber tutorials (https://ambermd.org/tutorials).
Previous experience with GIST is not necessary, although we

recommend reading the works referenced in section 7.

The presented analyses are run in Python. While no pro-

gramming experience is necessary to follow the tutorial, a

basic understanding of Python is advantageous to adjust

the code towards different requirements and use-cases.

2.2 Software/system requirements
The main implementation of GIST is part of the MD analy-

sis software cpptraj released with AmberTools [59, 60]. A

recent version of cpptraj should be used. We recommend

using at least version 6.24, which was released with Amber-

Tools24 [60]. An overview of how to work with cpptraj is

provided in the program’s documentation [61], AMBER man-

ual [59], AMBER tutorials [62] and on the AMBER-hubwebsite

[63].

The Amber simulation engine is used in this tutorial to run

theMD simulations. While Amber is free for non-commercial

use, it might not always be available in industrial settings. In

that case, other MD engines can be used as long as topolo-

gies and trajectories can be produced in a format supported

by cpptraj. If using GROMACS [64, 65], we propose to pre-

pare the topology with AmberTools [60] and convert it using

acpype.py [66]. Also, note that compressed trajectory for-

mats such as xtc might bias the entropy calculation due to

the loss of precision for the atom positions. For further ref-

erence, the influence of compression on energy calculations

was discussed in a recent publication [67].

Furthermore, a recent Python version (3.6 or newer)

should be installed, along with the following packages:

• gisttools (https://github.com/liedllab/gisttools, ≥ 0.2)

• mdtraj (https://www.mdtraj.org/, ≥ 1.9.7) [68]

• matplotlib (https://matplotlib.org/, ≥ 3.7.0) [69]

• numpy (https://numpy.org/, ≥ 1.23.5) [70]

• pandas (https://pandas.pydata.org/, ≥ 1.5.3) [71? ]

If the reader prefers to skip the MD and GIST calcula-

tions, GIST output files are provided with this tutorial,

such that the post-processing can be done without

any expensive calculations. Additionally, the MD simu-

lation files and raw GIST output files can be found at

https://researchdata.uibk.ac.at//records/4mbrd-67m83, to repro-
duce the results shown in this tutorial. We additionally pro-

vide a Jupyter notebook [72, 73] with the presented analyses.

Most of the visualizations and results in this tutorial can also

be obtained using the gistpp program, which is available

from https://github.com/KurtzmanLab/Gist-Post-Processing
(code and documentation). Gistpp can directly manipulate

OpenDX files from the GIST output.
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3 Running GIST
To run a GIST analysis, the following are required:

• cpptraj.
• A topology of the solutemolecule of interest in a solvent

box.

• An MD trajectory of that system.

Note that the solute should not move significantly for a GIST

calculation, since IST does not take the solute degrees of free-

dom into account. This is typically achieved by applying re-

straints on the solute heavy atoms during theMD simulation.

GIST analysis can be divided in three steps: defining a region

of interest, running GIST using cpptraj, and post-processing
and analysis. [6]

Identify and define the region of interest

In order to run a GIST analysis, one must define the region

where solvent properties will be calculated. This region is

defined by a rectangular grid with given position, size, and

voxel spacing. The default grid spacing of 0.5 Å provides rea-

sonable discretization for many use-cases. While integrals

of GIST quantities over the grid are independent of the voxel

size, provided sufficient sampling, individual values converge

slower at high resolutions. The grid is defined by parame-

ters of the gist command in cpptraj. The grid center is de-

fined by its center coordinates gridcntr, the voxel number in

x, y, and z direction by griddim, and the spacing (voxel side-

length) in Å by gridspacn:

Cpptraj

gist gridcntr <x> <y> <z> griddim <Nx> <Ny> <Nz> gridspacn <val>

If the solute is already centered at the origin (0, 0, 0), the

grid center does not need to be specified. As such, the GIST

calculation should usually be preceded by centering the so-

lute molecule in the unit cell and re-imaging to account for

periodic boundary conditions. Often, the region of interest

will be defined as the surroundings of a molecule, for ex-

ample a ligand in the binding pocket, or an entire protein.

We recommend using GIST grids with a similar size to the

simulation box, as the GIST calculation will usually not be

the time limiting step and a region of interest can then be

chosen freely in post-analysis. However, if computational

resources and disk space are limited, it might be beneficial

to reduce the grid size. The minimum recommended grid

size depends on the solvent and its interactions with the so-

lute. Generally, a grid encompassing two to three solvent

layers around the solute is sufficient. For water, this corre-

sponds to a buffer zone of around 10Å around the solute.

Integrating GIST free energies in a 10Å volume surrounding

neutral small molecule solvents is sufficient to estimate sol-

vation free energies [4, 5] however, larger grids might be nec-

essary for strongly charged solutes.

Using cpptraj’s bounds command, boundaries can be

output to a file. For example, here is the command for a

boundary of 15Å around the ligand LIG:

Cpptraj

bounds :LIG dx 0.5 offset 30 name Grid out bounds.dat

The atommask :LIG specifies the residue named LIG to build

the boundaries around, with dx and offset providing the ac-

tual dimensions of the boundaries, i.e. an offset of 30 times

0.5Å. Make sure that the bounds command is supplied with

the exact same trajectory as that used in the GIST calculation.

Any preprocessing steps need to match between the bounds
command and the gist calculation. A helper script called

findcentroid.py for the same purpose is supplied with this

tutorial, and can be used as follows:

Command-line

python findcentroid.py -i structure.pdb

Run GIST using cpptraj

GIST is implemented in cpptraj which requires the topology
and the trajectory of the MD simulation to be analyzed.

The command needed to run GIST in cpptraj can be writ-

ten in an input file (e.g. gist.in) for convenience and repro-

ducibility. The basic command, assuming a grid centered at

coordinates (x=10.5Å, y=20.1Å, z=30.1Å) and a grid size of

30× 30× 30 voxels with 0.5Å spacing, is:

Cpptraj

gist gridcntr 10.5 20.1 30.1 griddim 30 30 30 \
gridspacn 0.50 out gist.dat

This command tells cpptraj to run a GIST calculation using

the specified region and print the grid data in a file called

gist.dat. Additionally, .dx files for some default thermody-

namic densities are generated as well.

To use OpenMP, MPI or GPU-accelerated (using CUDA)

versions of cpptraj, a different executable name such as

cpptraj.OMP, cpptraj.MPI or cpptraj.cuda is often used.

Therefore, make sure to use the right compilation and exe-

cutable, to get the full benefit of the various improvements

to GIST as implemented in cpptraj. The gist action has

numerous options to modify the GIST calculation or its

output. A full list is provided at the end of this tutorial or

through the cpptraj manual. The most important options

are summarized in table 1.

In GIST, the calculated properties are derived by referenc-

ing against the bulk solvent. It is therefore important to set

the reference number density ρ0 according to the solvent

model used in your simulation. The solvent-solvent energy

Eww also needs to be referenced, but this is done in the post-

processing stage. The calculation of these properties and the
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Table 1. The main options for GIST in cpptraj.

Command Options Explanation Default

gridcntr <x> <y> <z> Coordinates of the

grid center in Å

0 0 0

griddim <nx> <ny> <nz> Number of voxels per

axis

40 40 40

gridspacn <dval> Grid spacing / voxel

dimensions in Å

0.5

refdens <rdval> Reference density of

the bulk water in

molecules/Å3.

0.0334

temp <tval> System temperature in

Kelvin

300

need for referencing is discussed in-depth in section 7. Den-

sities and reference energies of typical water models can be

found in the cpptraj manual. We also provide the densities

for water models commonly used with AMBER force fields in

Table 2. These densities were calculated from 100nsMD sim-

ulations at 1bar and 300K using the Berendsen barostat and

the Langevin thermostat. The water boxes were prepared

with tleap to a size of 100Å x 100Å x 100Å before pressure

equilibration.

Because of the different sizes of the boxes, the reference

energies used in this tutorial may not align with those spec-

ified in the Amber manual. In general, it is advisable to con-

duct your own reference calculations, especially for systems

that are either very large or very small. The reference values

can be extracted from unrestrained MD trajectories of pure

bulk solvent by calculating the average potential energy per

solvent molecule (Eww,norm) and the average solvent density

ρ0:

Eww,norm =
Ēpot, total

NWAT
(1)

ρ0 =
NWAT

V̄box

(2)

It is recommended that the size of the reference solvent box

closely matches that of the production system. While the im-

pact on the density is not as pronounced, deviations from

the production settings can lead to differences of up to 0.005

kcal/mol in the energy per solvent molecule (Eww,norm) for wa-

ter boxes. These discrepancies, when summing over large

grid regions, have the potential to introduce significant er-

rors due to incorrect referencing.

Postprocessing and Analyzing GIST results

Cpptraj outputs grid quantities in OpenDX (.dx) file format

which can be visualized in PyMOL or VMD. Aside from ther-

modynamic quantities, GIST also calculates the number den-

sity of each atomic element in the solvent. Here is a list of

the most important quantities calculated by GIST:

Table 2. Reference number density ρ0 andmean solvent-solvent en-

ergy Eww,norm for various watermodels fromNPT simulations of NWAT

water molecules at 300K and 1bar.

Water Model ρ0 Eww,norm NWAT

/Å
−3

/kcal ·mol
−1

TIP3P [74] 0.03287 -9.5398 31795

TIP3PFB [75] 0.03321 -11.7214 32502

TIP4P [76] 0.03316 -9.8583 31218

TIP4PFB [75] 0.03330 -11.8724 31653

TIP4P/Ew [77] 0.03323 -11.0541 31218

TIP5P [78] 0.03285 -9.5989 31382

SPC/E [79] 0.03333 -11.1334 31795

SPC/Eb [80] 0.03358 -11.6966 31795

OPC [81] 0.03330 -12.2456 31842

OPC3 [82] 0.03323 -11.6994 32251

• [gX] For every element in the main solvent, the number

density of atoms found in the voxel, in units of the bulk

density. If the same element occurs multiple times, the

bulk density is scaled such that the expectation value

for the bulk is unity. For water, gO and gH are produced.
• [Esw] Mean solute-water interaction energy.

• [Eww] Mean water-water interaction energy.

• [PME] (only if PME was used) water PME energy.

• [dTStrans] First order translational entropy.

• [dTSorient] First order orientational entropy.

• [dTSsix] First order entropy for the six-dimensional

combined orientation and translation space.

• [dipole] Magnitude of mean dipole moment (polariza-

tion).

Several dx files are written by default, such as the energy,

entropy, and atomic number densities. All calculated quan-

tities are written to the output file (default gist-output.dat)
and can be used to generate DX files for other quantities. A

full list of all properties in the output is provided at the end of

the tutorial in section 8. The output file is organized by voxel

and sorted according to their x, y, and z coordinates, describ-

ing the center point of the voxel. Energy and entropy quanti-

ties are reported in two different ways. The _dens quantities
are normalized by the voxel volume and can be used to com-

pute integrals. The _norm quantities are instead normalized

by the solvent number density in the respective voxel aver-

aged over all considered frames, and are useful to visualize

local water properties. Converting a _norm quantity X
k
norm in

voxel k to a _dens quantity Xk
dens

, works as follows:

X
k

dens =
X
k
norm

Vk
·
N
k

solvent

Nframes
(3)

with V
k
, the volume of voxel k, N

k

solvent
, the number of solvent

molecules in k over all simulation frames, and Nframes, the

number of frames.
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4 Tutorial
Here, we aim to guide the reader through a GIST analysis of

the streptavidin-biotin complex. The tutorial is structured as

follows:

1. Set up and runGIST calculations for a smallmolecule so-

lute (biotin) and a protein (streptavidin) binding pocket.

2. Compute biotin’s free energy of solvation using GIST.

3. Visualize local contributions to ΔAsolv in the streptavidin

binding pocket and around biotin.

4. Compute the hydration contribution of the biotin,

streptavidin and complex to the binding. Combined

with the biotin–streptavidin interaction energy, the

binding free energy can be estimated.

5. Explore advantages and disadvantages of the GIST

method when used to calculate ΔAsolv

In the first part, we show how to run GIST calculations

for small molecule solutes and interpret the output. This

provides an example of a simple GIST workflow, without too

many details. Afterward, we apply this to a protein binding

pocket and estimate a free energy of ligand binding using an

end-states approach based on GIST. In addition, we discuss

all steps shown in the first example in further detail.

4.1 Streptavidin/Biotin
The streptavidin-biotin complex binding is one of the

strongest known non-covalent interactions involving a small

molecule. Therefore, the combination of streptavidin and

biotin is used routinely as a validation case [83], and the

interaction between them has been investigated in detail

[84].

In nature, streptavidin occurs as a tetramer, and binds bi-

otin with a binding constant of ∼1014M−1
[83]. Streptavidin

has a so-called flap region, which closes the binding pocket

after biotin binding. Here, we will investigate the binding of

biotin to a closed streptavidin monomer for simplicity. The

binding to the closed conformation of the tetramer has been

estimated to have a free energy of −26.6 kcalmol
−1

[85].

4.2 Tutorial data
We will use the crystal structure of streptavidin (PDB code:

1STP [86]) to start our calculations. In section 4.3, we will use

the biotin ligand extracted from the crystal structure. For the

second part in section 4.4, we will use the whole crystal struc-

ture. Alternatively, prepared and solvated Amber topologies

based on 1STP can be downloaded by running

Command-line

git clone git@github.com:liedllab/gist-tutorial.git

This will download the tutorial files, including both the

manuscript and the examples in the code folder. Addition-

ally, the original MD trajectory files and raw GIST output

files are provided at https://researchdata.uibk.ac.at//records/
4mbrd-67m83.

4.3 Running GIST for Biotin
In this example, we will be running a simple GIST calculation

of the biotin solute molecule to get familiar with the usage of

GIST in cpptraj.

4.3.1 System preparation

First, extract biotin from the crystal structure and generate

a topology and coordinate file compatible with Amber or

a simulation package of your choice. The solute molecule

should be solvated with a sufficiently large solvent box. For

periodic boundary conditions, the size of the solvent box

should be large enough for the solvent to behave bulk-like

so as to reduce artifacts from solvent-mediated interactions

between the periodic images. This corresponds to a distance

between solute and box boundary of at least 12Å for water

[4, 5] though we recommend 15Å or higher. Carefully check

the employed force field, protonation state and partial

charges. A good starting point for the parametrization

and solvation of small molecules is the Amber tutorial 4b

(http://ambermd.org/tutorials/basic/tutorial4b/).

4.3.2 Equilibration

Equilibrate your solvated biotin in an NVT or NPT ensemble.

Even when running the simulation in NVT, it is advisable to

include an NPT equilibration step to adjust the box size be-

forehand. Use enough equilibration time to allow the solvent

to relax. A well-tested equilibration protocol can be found in

the literature [87].

4.3.3 MD simulation

The next step is to run an MD simulation based on the equili-

brated structure of biotin to generate solvent configurations

for subsequent GIST analysis. The density expansion in IST

relies upon the Percus source particle [88] which has a rigid

solute. Motion of the solute has the effect of smoothing out

the water density distributions leading to overestimates of

the solvent entropy. The more solute motion, the greater

the overestimate. The MD simulations can be run with con-

straints that prevent the motion of the solute. In practice,

however, the solute heavy atoms can be restrained so that

the solute does not move significantly during the MD simula-

tion. To minimize the entropy overestimate, we recommend

that RMSD of the solute during simulations be 0.1Å or lower.

In AMBER, the harmonic restraint potential takes the form

U = kr · (r − r0)
2
for each cartesian coordinate of each re-
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strained atom, where r0 is its reference position. The force

constant kr should be chosen strong enough to prevent sig-

nificant deviation. Here, we apply a harmonic restraint of

100 kcalmol
−1

Å
−2

to all heavy atoms. We recommend at

least 2.5 kcalmol
−1

Å
−2

restraints.

The longer the simulations, the better the convergence of

GIST energy and entropy estimates with the entropy values

converging more slowly. An analysis of the convergence of

the entropy in GIST can be found in Ramsey et al. [6]. High

precision energy and entropy values are necessary for calcu-

lating integrated GIST quantities (see Section 4.4.5) as small

errors on a per-molecule basis can lead to large errors when

summing over hundreds or thousands of water molecules.

For qualitative mapping of solvation thermodynamic quanti-

ties, however, significantly shorter simulations generally suf-

fice. For integrated quantities, we recommend 100ns trajec-

tories and, for mapping, trajectories of 5ns to 10ns are gen-

erally sufficient. We note that storing solvent configurations

too frequently from MD trajectories can lead to systematic

bias in the nearest neighbors entropy estimates (seeHuggins

[89]). We recommend that configurations be stored nomore

frequently than every 2ps. An example AMBER input file for

GIST might look like this:

Amber input

restrained 100 ns NPT
&cntrl

ntx=5, irest=1,
ioutfm=1,
ntb=2, iwrap=1,
ntr=1, restraint_wt=100.0,
restraintmask='!@H=&!:WAT',
ntp=1, pres0=1.0, taup=1.0,
ntc=2, ntf=2,
ntt=3, tempi=300.0, temp0=300.0, gamma_ln=2,
nstlim=50000000, dt=0.002,
ntwr=50000, ntwx=5000, ntpr=5000,

/

For a full explanation of the input parameters, please refer to

the Amber manual [59]. Note the restraintmask, which spec-

ifies that all atoms except for hydrogens and water should

be restrained, i.e. all heavy atoms of the solute. This file will

run a 100ns NPT MD simulation while keeping all atoms ex-

cept for hydrogens and waters restrained. Note that these

are very standard MD settings except for the restraints. Run

the MD using pmemd.cuda:

Command-line

pmemd.cuda \
-O \
-i 100ns-npt-restraint.in \
-o md-01.out \
-p solvated.parm7 \
-c EQUIL-DONE.rst \
-x md-01.nc \
-r md-01.ncrst \
-ref EQUIL-DONE.rst

4.3.4 GIST analysis

To start our GIST analysis of biotin, wewill first have to decide

on the parameters defining the GIST grid during the analysis.

We will need a solute structure without water for the anal-

ysis of our future GIST results. Since we ran our MD simula-

tionwith periodic boundaries, we always need to re-image all

molecules to the original box using cpptraj’s autoimage func-
tion. We also recommend that you center the biotin solute

molecule to the coordinate origin, as this simplifies the defi-

nition of our grid origin later on:

Cpptraj

# Load the topology ('parm') and coordinates of the first frame
parm solvated.parm7
trajin md-01.nc 1 1 1
# Reimage and center the solute (not water residues) to the origin
autoimage !(:WAT) origin
# Strip all water molecules and write out a pdb file
strip :WAT
trajout biotin-centered.pdb
run

In this code snippet, the first two lines load the topology and

coordinates of the first frame of our MD simulation. In the

third line, we re-image the coordinates to the first box and

center the biotin at the origin. Then, we strip all water solvent

molecules in the fourth line andwrite out a pdb file in the fifth

line. Finally, we start the analysis with the "run" command.

To decide on a grid size, find the extent (minimum and

maximum) of the x-, y-, and z-coordinates of the molecule.

To get bulk-like water properties at the grid border, a buffer

distance of 15Å is reasonable for biotin. The grid parameters

can be directly calculated using cpptraj’s bound command:

Cpptraj

# Load the topology ('parm') and coordinates of the first frame
parm solvated.parm7
trajin md-01.nc 1 1 1
# Reimage and center the solute (not water residues) to the origin
autoimage !(:WAT) origin
# Calculate the grid bounds with a buffer of 15Å
# and a voxel size of 0.5Å
bounds !(:WAT) dx 0.5 offset 30 name Grid out bounds.dat
run

First, we load the topology and coordinates of the first frame

of our MD simulation (1 1 1 meaning start=1, stop=1, and

stride=1). Then, we re-image the coordinates and center the

solute at the origin. Here, dx 0.5 sets a voxel spacing of 0.5 Å

for the boundary determination, and offset 30 adds a buffer

of 30 voxels (i.e., 30 × 0.5 = 15) to each dimension. The

atom mask !(:WAT) specifies that the grid should be calcu-

lated around all atoms that are not water residues. Note that

the offset is given in terms of the number of additional vox-

els, not in length dimensions. By varying the atom mask in

the bound command, it is possible to center the grid on a re-

gion of interest, similar to the findcentroid.py script.
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Now, you can run the actual GIST analysis. Re-image

and center the solute molecule as above, to verify that its

position matches the grid parameters you decided on. We

recommend using either the GPU implementation or MPI-

accelerated PME implementation of GIST. While the GPU

version is faster when limited CPU resources are available,

the PME implementation matches the energy of the Amber

MD engine more closely. The MPI implementation [90]

scales well over multiple CPU cores and can be combined

with either the GPU or PME implementations for maximum

efficiency. A speed comparison of the various parallelization

implementations is shown in [90]. The reason for the many

different implementations is that GIST is a very computation-

ally expensive calculation, and historically, the CPU version

was the only one available. The GPU version improved the

speed of GIST calculations significantly, allowing for grids

encompassing whole biomolecules for the first time. The

PME version came after with the intention to match the

energy of the AMBER MD engine more closely to compare

with other free energy methods. Most recently, the MPI

parallelization provided another significant speed up for all

implementations.

Cpptraj

# Load the topology ('parm') and coordinates of the full trajectory
parm solvated.parm7
trajin md-01.nc
# Reimage and center the solute (not water residues) to the origin
autoimage !(:WAT) origin
# Run GIST with a grid centered at the origin
# and a grid size of 100x100x100 voxels with 0.5\AA spacing
# The 'pme' option enables PME-GIST calculations.
gist griddim 100 100 100 out gist.dat \
refdens 0.03287 pme

4.3.5 Working with the GIST results

Running the GIST analysis above generates an output data

file (gist.dat) containing all calculated quantities for each

voxel in the grid. Additionally as outlined in section 3, various

quantities are written to OpenDX files. To interact with your

GIST data, we recommend the gisttools library for python3.

Open the GIST output with gisttools:

Python

from gisttools.gist import load_gist_file
import matplotlib.pyplot as plt
# Load the GIST data, setting the reference water-water energy
gist = load_gist_file(
'gist.dat', struct='solute-centered.pdb',
eww_ref=-9.539)
# Print the number of frames and the reference density
print(f'n_frames = {gist.n_frames}')
print(f'rho0 = {gist.rho0}')

The gist object now provides access to all information from

the output file. If the number of frames of the simulation

(n_frames) and the reference density (rho0) are not provided,

they are automatically detected from the GIST data. We will

discuss a way to similarly detect the reference energy of the

solvent-solvent energy Eww in the advanced section.

The GIST data can be accessed andmodified from the gist

object in various ways. Gisttools provides access to single or

multiple voxels through a .locproperty similar to the pandas

library. GIST quantity data for all voxels can be accessed by

directly indexing the gist object, either by providing a single

name or a list of names. Indexing with .loc works by pro-

viding a voxel index (either an index number or list of num-

bers) and optionally a column index (column name or list of

names). Indices start from 0 and indexing will return a single

entry, pandas series or pandas dataframe depending on the

query:

Python

# GIST objects contain pandas dataframes
gist.loc[0, 'population'] # single value
gist.loc[0] # Series
gist.loc[[0,1], ['x', 'y', 'z']] # DataFrame
gist['dTSsix_norm'].head() # Series
gist[['Eww_norm', 'Esw_norm']].head() # DataFrame

Gisttools also calculates the total energy per voxel (Eall) as a

sum of Eww and Esw , and the free energy of solvation (A) by

subtracting TΔSsix from Eall.

Information about the grid is stored in the grid property of

the gist object and structural data (supplied as a pdb of the

solutemolecule) is stored as an mdtraj trajectory in the struct
property:

Python

gist.grid # Grid object
gist.struct # mdtraj.Trajectory object

Gisttools also provides OpenDX writing capabilities to visu-

alize the calculated or modified GIST data. For visualization,

you’ll most likely want to write out the density-normalized

GIST quantities (X_dens):

Python

# Write the column A_dens (the free solvation energy) to a dx file
gist.save_dx('A_dens','A.dx')

Section 6 discusses the visualization of OpenDX files.

4.4 Applying GIST for the Streptavidin-Biotin
complex

In this section we will apply GIST to the full complex and dis-

cuss each step of the process in more detail to outline poten-

tial pitfalls. We will afterward introduce advanced analysis

workflows which allow you tomodify and better visualize the

resulting data.
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4.4.1 System Preparation

If you want to skip this section, you can run

Command-line

make equilibration-targets

in the code folder. This assumes that you have Python and

Amber set up properly, and that pmemd.cuda is in the PATH.
The choice of initial structure is crucial to the GIST results.

When starting from an experimental structure, care has to

be taken during the preparation step. Make sure to choose

a proper protonation state for all titratable moieties. You

will need to solvate your structure in a solvent box, which

should be large enough to obtain unbiased long-range

electrostatics and avoid solvent-mediated interactions of

periodic images. A good criterion for validating the box

size is to check whether the solvent on the outside of the

box behaves bulk-like according to the GIST output. Note

that, due to the restraints and finite sampling time, some

solvent sites might be inaccessible to the bulk solvent. To

investigate such positions, make sure that the number of

explicitly placed solvent molecules in such sites matches

with experiment or your best guess. For cases where

the exact occupation of such sites is unknown, it may be

helpful to include grand-canonical Monte Carlo (GCMC) or

nonequilibrium candidate Monte Carlo (NCMC) sampling

steps in the equilibration or production stage [91, 92]. It is

good practice to check your restrained MD simulation or

solvent populations obtained by GIST to confirm whether all

relevant sites were properly solvated.

4.4.2 Equilibration

Use the equilibration.py script (or your own procedure) to
perform short NVT and NPT equilibration runs on the com-

plex structure. Note that the equilibration script contains

unrestrained NPT steps, because restraining two molecules

simultaneously might interfere with the pressure equilibra-

tion. Then, use cpptraj to produce biotin and streptavidin

structures based on the complex by stripping the respective

other molecule like this:

Cpptraj

# Load complex topology and coordinates after equilibration
parm complex/solvated.parm7
trajin complex/equil/EQUIL-DONE.rst
# Assuming biotin is residue 2 in the complex topology:
# Remove biotin (^2) from the complex, save topology and coordinates
strip ^2 parmout streptavidin/solvated.parm7
trajout streptavidin/pre-equil.ncrst

Adapt the above input file for biotin by stripping themolecule

1 instead of 2 and replacing the path names in the strip
and trajout commands. Alternatively, we provide a small

script named cpptraj_remove_mol.sh for this procedure. Af-
ter that, use equilibration.py -R to run short, restrained

equilibrations (where only the water is allowed to move) on

the individual systems. By using restraints, we can ensure

that the monomer conformations match the complex.

4.4.3 GIST analysis of Streptavidin-Biotin

To create input bash scripts for the MD simulations and GIST

analysis, run the following commands in the code folder:

Command-line

make gist-md-inputs
make gist-inputs

After running the MD simulations as described in section

4.3.3, proceed with the GIST analysis. For easier post-

processing, here we use grids that contain the whole

solute molecule and the surrounding solvent. If one is only

interested in solvent in the binding site, smaller grids encom-

passing only the binding site could be used for streptavidin

and the complex. While this saves calculation time for the

GIST analysis, it complicates the post-processing. Since the

GIST analysis is usually less time-demanding than the MD

simulation, we recommend using larger grids. Furthermore,

we recommend that you center the solute molecule to the

coordinate origin to simplify the analysis. Calculate the

GIST grid parameters as outlined in the section 4.3 for the

complex and streptavidin and run the GIST analysis.

For larger systems, like whole proteins, you can usually

get away with a smaller buffer region for the GIST grid com-

pared to small molecule solutes. To test whether your grid

is large enough, look at solvent properties close to the grid

edges, e.g. the solvent-solvent energies. If these correspond

to the respective bulk properties, it can be assumed that your

grid is large enough to capture all perturbations to the sol-

vent caused by the solute. Note that a different box size or

number of solvent molecules can skew the bulk properties

slightly compared to the reference values provided above. In

that case, checking for convergence of the solvent properties

near the grid borders is sufficient. You might want to modify

your reference values according to your results, as described

in the next section.

4.4.4 Reference Values and Radial Convergence

All GIST quantities should be expressed relative to the bulk as

outlined in section 7. This is automatically done by cpptraj
for the entropy, using the bulk density specified by refdens.
The solute-solvent energy Esw is zero in neat water as there

is no solute. However, the solvent-solvent energy Eww needs

to be referenced.

The Amber manual provides reference densities and ener-

gies for several solvents. Furthermore, a large variety of ref-

erence values calculated with GPU-GIST are listed in Table 2.

However, the exact energy values are different when using
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PME-GIST, and they also depend on the box size. For quanti-

tative analyses, it is recommended to compute an exact ref-

erence energy. The most accurate method to compute a ref-

erence energy is to run a GIST calculation of the pure solvent

using the same energymethod (PME/GPU), a similar box size,

at the same temperature and pressure and then compute

the average solvent-solvent energy per solvent molecule.

E
ref

ww =

∫
Ewwdx〈
Nsolvent

〉 =

∑
voxels

E
dens
ww Vvox∑

voxels
Nsolvent/Nframes

(4)

Alternatively, the solvent-solvent energy in a large GIST grid

converges to the bulk value at sufficient distance to the so-

lute molecule. Therefore, the reference energy can be ob-

tained by binning the voxels by their distance to the solute

molecule, and evaluate Equation 4 within each bin. If this

value converges with increasing distance from the solute, it

can be used as E
ref

ww,ref
.

gisttools contains functions to facilitate this analysis.

There is also a method detect_reference_value that auto-

matically tries to find the converged value. Although it has a

simple convergence check built-in, it is always recommended

to check the convergence by hand. A handy way to check this

is to calculate the radial distribution of this GIST property, i.e.

a histogram in relation to the distance to the solute. Because

of the conceptual similarity to classical radial distribution

functions, describing the density of distances between two

particle types, this function is exposed to the user as the rdf
method.

Python

from gisttools.gist import load_gist_file
import matplotlib.pyplot as plt
# Load the GIST data without Eww set
gist = load_gist_file(

'gist.dat', struct='solute-centered.pdb')
# Run an rdf calculation to show the unref. Eww
bins, eww = gist.rdf(

'Eww_unref_norm', bins=100, rmax=20.,
normalize='norm')

plt.plot(bins, eww)
# Run the Eww autodetection
eww_auto = gist.detect_reference_value()
plt.axhline(eww_auto, color='k', linestyle='--')
plt.gca().set(

xlabel='Distance [$\AA$]',
ylabel='Avg. E$_{ww}$ per molecule [kcal/mol]',
xlim=(1, 15))

plt.show()

The expected output of this code is shown in Figure 2. Af-

ter choosing an appropriate reference value, we need to sub-

tract this value from Eww . Make sure to subtract the reference

from the normalized (_norm) data. In gisttools, this is done
simply by setting gist.eww_ref:

Python

gist.eww_ref = gist.detect_reference_value()

Figure 2. Convergence of Eww in the complex calculation with in-

creasing distance to the solute molecule (streptavidin-biotin). The

horizontal line shows the automatically computed reference energy.

Now, sum all free energy contributions to obtain the spatially

resolved ΔAsolv. In gisttools, this is done automatically and

can be accessed using the A_dens and A_norm data rows.

ΔAsolv(r) = ΔEww(r) + ΔEsw(r)− TΔS
six
(r) (5)

After that, check whether your free energy contributions be-

come negligible at large distances from the solute molecule.

In a plot like Figure 2 based on the A_dens column, the val-

ues should tend to zero. However, it is more informative to

plot the cumulative free energy contribution against the dis-

tance to the solute molecule, to check the convergence (see

Figure 3). If the curve flattens out, the converged value is

your final ΔAsolv. If the curve diverges even for large integra-

tion distances, it depends on which of the contributing parts

diverges.

Python

from gisttools.gist import load_gist_file
import matplotlib.pyplot as plt
import numpy as np
# adapt eww_ref according to the used solvent model!
gist = load_gist_file('gist.dat',

struct='solute-centered.pdb', eww_ref=-9.5398)
# Calculate rdfs for multiple columns
bins, (da, esw, eww, s) = gist.multiple_rdfs(

['A_dens', 'Esw_dens', 'Eww_dens', 'dTSsix_dens'],
bins=100, rmax=20., normalize='none')

# Plot the cumulative sum of the free energy contributions
# Note the sign change for the entropy (plots -TdS instead of TdS)
plt.plot(bins, np.cumsum(eww), label=r'$\Delta$E$_{ww}$')
plt.plot(bins, np.cumsum(esw), label=r'$\Delta$E$_{sw}$')
plt.plot(bins, np.cumsum(da), label=r'$\Delta$A')
plt.plot(bins, np.cumsum(-s), label=r'-T$\Delta$S')
plt.legend()
plt.xlabel(r"Distance Cutoff [$\AA$]")
plt.ylabel("Free Energy Contribution [kcal/mol]")

The expected output of this code is shown in Figure 3. Here

we see two effects: First, that the solute-solvent energy Esw

converges only slowly, due to the charged nature of biotin.
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Figure 3. Convergence of ΔAsolv and its contributions with increas-

ing distance to the solute molecule. All quantities are cumulative,

i.e., summed up to the respective radius. Computed from the biotin

calculation.

Second, that the solvent entropy does not converge to a fixed

value, even at large distances. Most often, this occurs due to

a systematic bias in the nearest neighbor entropy calculation,

which converges to the correct value from above [4, 89]. This

can be fixed by either calculating the bias per watermolecule

(as was done in [4]) or referencing the entropy in the same

manner as the Eww,norm:

Python

def reference_entropy(gf):
'''
Reference the entropy to zero at large distances.
'''
if 'dTSsix_unref_norm' not in gf.data.columns:

gf['dTSsix_unref_norm'] = gf['dTSsix_norm']
gf['dTSsix_unref_dens'] = gf['dTSsix_dens']

refval = gf.detect_reference_value('dTSsix_unref_dens')
gf['dTSsix_norm'] = gf.get_referenced('dTSsix_unref_norm', refval)
gf['dTSsix_dens'] = gf.get_referenced('dTSsix_unref_dens', refval)

reference_entropy(biotin)

When we recreate the plot from Figure 3 with the referenced

entropy in Figure 4, we see that the divergence is removed.

While Eww converges well here when using the tabulated

Eww,norm, if it diverges, onemight need to tweak the Eww refer-

ence by either using the automatic referencing, using a differ-

ent tabulated Eww,norm value or running a pure bulk solvent

reference calculation. The most common cause of strong di-

vergence of Eww is that the reference value is set to a value

of a different solvent model.

4.4.5 Visualizing the Solvation Free Energy (ΔAsolv)

Next, we visualize the energetic contributions to the free

energy of solvation. You can use PyMOL[93] or VMD[94] to

visualize the .dx files from GIST. With gisttools, you can cre-
ate one using e.g., gist.save_dx(’A_dens’, ’A_dens.dx’).
It might also be interesting to visualize the average energy of

Figure 4. Convergence of ΔAsolv and its contributions with increasing
distance to the solute molecule. The entropy was referenced, so it

converges to zero for voxels far away from the solute.

a water solvent molecule at each grid voxel. This quantity is

given by 2Eww+Esw . The energy referencing leads to non-zero

normalized values where the population is zero. While this is

irrelevant for further post-processing, it is advantageous for

visualization to set those empty regions to zero. An OpenDX

file can be produced using gisttools as follows:

Python

import gisttools as gt
# Load the GIST data, make sure to set the correct reference energy
gist = gt.gist.load_gist_file('gist.dat',

struct='solute-centered.pdb', eww_ref=-9.5398)
# Calculate the total energy without double counting
gist['E_norm'] = gist['Eww_norm'] * 2 + gist['Esw_norm']
# Set the energy to zero for all voxels with no population
gist.loc[gist['population'] == 0, 'E_norm'] = 0
# Save the new energy to a dx file
gist.save_dx('E_norm', 'gist-E-per-mol-norm.dx')

The OpenDX files can then be imported into your molecular

viewer of choice. A visualization of energetic contributions

to the free energy of solvation of the streptavidin binding

pocket is shown in Figure 5. The streptavidin binding pocket

is largely hydrophobic, leading to energetically unfavorable

water in themiddle and right of the cavity. The green regions

on the left of the cavity are where biotin forms hydrogen

bond interactions with the protein (green). Note that this is

"norm" data, so not density-weighted but rather comparing

voxels on a per-molecule basis. The surfaces are therefore

disjointed since even voxels seldomly sampled by water are

shown. PyMOL input scripts to generate such visualizations

are available in the GitHub repository for this tutorial.

4.4.6 Contribution of Hydration to Binding

In the next step, we calculate the ΔAsolv contributions around

biotin in each system (biotin, streptavidin, and complex).

Note that our integration region does not fully reach into

bulk, and some of the boundary regions are close to strep-
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Figure 5. Water energy using "norm" data represented as volume

in the streptavidin binding pocket overlaid with biotin. Red: high sol-

vent energy (from +3.5 to +2.5 kcal/mol/molecule). Blue: low solvent

energy (from -3.5 to -2.5 kcal/mol/molecule). The energy density is

based on the apo structure without double-counting and is shown

only within 1Å of biotin.

tavidin. Therefore, our results for each system will depend

on the exact position of the integration boundary. To avoid

inconsistencies, it is important to choose exactly the same

integration region for each system. Although we kept the

systems rigid, the center of mass might have been shifted

during pressure equilibration. Therefore, we align the

complex structure to streptavidin and use the shifted biotin

coordinates to define the integration region. We recom-

mend using a Jupyter Notebook for the following analyses.

Load the files and double-check the frame numbers and

reference density.

Python

import numpy as np
from gisttools.gist import load_gist_file
import matplotlib.pyplot as plt
# Load the GIST data, setting no reference energy
# since we will calculate it later
compl = load_gist_file('complex/gist/gist.dat', \

struct='complex/gist/solute-centered.pdb')
print(compl.n_frames, compl.rho0)
biotin = load_gist_file('biotin/gist/gist.dat', \

struct='biotin/gist/solute-centered.pdb')
print(biotin.n_frames, biotin.rho0)
strept = load_gist_file('streptavidin/gist/gist.dat', \

struct='streptavidin/gist/solute-centered.pdb')
print(strept.n_frames, strept.rho0)

Assign reference energies and check them for plausibility.

Python

# Set the reference density for the solvent by automatic detection
biotin.eww_ref = biotin.detect_reference_value()
print('Biotin:', biotin.eww_ref)
strept.eww_ref = strept.detect_reference_value()
print('Streptavidin:', strept.eww_ref)
compl.eww_ref = compl.detect_reference_value()
print('Complex:', compl.eww_ref)

Subtract a reference entropy from the dTSsix columns.

Python

reference_entropy(biotin)
reference_entropy(strept)
reference_entropy(compl)

Next, compute the atompositions that define the integration

region. For the streptavidin integral, we align the complex

structure to streptavidin and then use the biotin positions

as centers. Note that we use mdtraj here, since gisttools
stores the reference structure as an mdtraj Trajectory ob-

ject. Here, we compute the histogram of the contributions of

single properties to assess the convergence.

Python

import mdtraj as md
col = 'dTSsix_dens'
def select(traj, sel):

# Slice a Trajectory by selection mask.
return traj.atom_slice(traj.top.select(sel))

# Define atom masks in mdtraj syntax for biotin and streptavidin
biotin_mask = 'resname BTN and not type H'
strept_mask = 'not resname BTN and not resname WAT and not type H'
# select the biotin atoms, we multiply by 10 to convert nm to Å.
compl_x = select(compl.struct, biotin_mask).xyz[0] * 10.
biotin_x = select(biotin.struct, biotin_mask).xyz[0] * 10.
# align the complex to streptavidin
# and select the streptavidin atoms
aligned = compl.struct[:].superpose(strept.struct, \

atom_indices=strept.struct.top.select(strept_mask))
aligned = select(aligned, biotin_mask)
strept_x = aligned.xyz[0] * 10.

# Now we can calculate the radial distribution functions
bins, biotin_rdf = biotin.rdf( \

col, centers=biotin_x, bins=100, rmax=24)
bins, strept_rdf = strept.rdf( \

col, centers=strept_x, bins=100, rmax=24)
bins, compl_rdf = compl.rdf( \

col, centers=compl_x, bins=100, rmax=24)

Now, subtract the monomer histograms from the complex,

and compute the sum of your property within some cutoff

distance to the solute. If you visualize the individual his-

tograms, you will notice that the difference converges much

better with increasing radius than the single contributions.

Python

# Endstate approach: complex - monomers
difference = compl_rdf - biotin_rdf - strept_rdf
# Set integration cutoff
cutoff = 12
# Integrate the difference
integral = difference[bins < cutoff].sum()
print('Integral = {}'.format(integral))
# Plot the cumulative sum of the difference
plt.plot(bins, np.cumsum(difference))
plt.axvline(cutoff)
plt.xlabel('distance to biotin [Å]')
plt.ylabel('$\Delta A$ contribution [kcal/mol]')
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Finally, you can also plot the difference between the complex

and monomer contributions against the distance to biotin,

using the complex coordinates for the holo structure:

Python

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
cutoff = 12
# In the first plot, we show the cumulative sum of the contributions
ax1.plot(bins, np.cumsum(biotin_rdf), label='biotin')
ax1.plot(

bins, np.cumsum(strept_rdf), label='streptavidin')
ax1.plot(bins, np.cumsum(compl_rdf), label='complex')
ax1.legend()
ax1.axvline(cutoff, color='k', linestyle='--')
ax1.set_xlabel(r'Distance to Biotin [Å]')
ax1.set_ylabel(r'$\Delta A$ contributions [Å]')
ax1.grid()

# In the second plot, we show the difference of the cumulative sums
difference = compl_rdf - biotin_rdf - strept_rdf
ax2.plot(bins, np.cumsum(difference))
ax2.axvline(cutoff, color='k', linestyle='--')
ax2.set_xlabel(r'Distance to Biotin [Å]')
ax2.set_ylabel(r'$\Delta \Delta A$ [kcal/mol]')
ax2.grid()
plt.show()

The expected result is shown in Figure 6.

Next, compute the energy (Eall) and entropy (dTSsix)
contributions separately. To make this easier, gisttools

includes a function to integrate in a radius around atom

centers:

Python

import pandas as pd
# Integrate the energy and entropy contributions
centers = {'biotin': biotin_x,

'strept': strept_x,
'compl': compl_x}

gist_objs = {
'compl': compl,
'strept': strept,
'biotin': biotin,

}
cols = ['Eall_dens','dTSsix_dens']
rmax = 12
results = {

name: gist.integrate_around(
cols, rmax, centers[name])
for name, gist in gist_objs.items()}

print(pd.DataFrame(results).T)

You will find that the energy disfavors binding; we do not yet

include the interaction energy between biotin and strepta-

vidin. Using the energy command in cpptraj, you can com-

pute this interaction energy. We recommend using PME in

combination with PME-GIST, but not with GPU-GIST to be in

linewith the differentways the energy is calculated in the two

GIST methods.

Figure 6. Left: ΔAsolv contributions around the location of biotin in

the binding pocket, evaluated in the biotin, streptavidin, and com-

plex systems. Each line represents a cumulative sum plotted against

the distance to biotin. Right: The hydration contribution to binding,

evaluated as the difference between the lines in the left panel. The

vertical dashed line is at 12Å and represents the chosen integration

cutoff.

An example cpptraj is then:

Cpptraj

# Load the topology and trajectory of the complex
parm solvated.parm7
trajin md-01.nc 1 last 100
# Calculate the interaction energy of the complex (^1,2)
# and the monomers (^1 for streptavidin, ^2 for biotin)
energy complex ^1,2 # etype pme
energy strept ^1 # etype pme
energy biotin ^2 # etype pme
go
diff = complex[total] - strept[total] - biotin[total]
writedata energy.dat diff complex[total] \
strept[total] biotin[total]
avg(complex[total])
avg(strept[total])
avg(biotin[total])
avg(diff)

It has been shown [4, 5] that the solvation entropy in water

is best approximated by 0.6 times the first order entropy

provided by GIST. So we also compute the scaled entropy

and check the effect on the binding affinity. The expected

results are summarized in Table 3.

Table 3. Free energy contributions for the monomers and the dimer

in kcal·mol−1. “Diff” is calculated as Einternal+ΔEGIST−TΔSscaled. “total”

is calculated as “complex”-“streptavidin” - “biotin”.

System Einternal ΔEGIST TΔSGIST TΔSscaled Diff

complex -1303.4 -361.2 -233.1 -139.9 -1524.7

streptavidin -1180.7 -360.8 -242.4 -145.4 -1396.1

biotin -24.0 -98.1 -35.1 -21.1 -101.0

total -98.7 97.7 44.4 26.6 -27.6

Although streptavidin-biotin is known to be a very stable

complex, the free solvation energy (ΔE
GIST − TΔS

scaled
) favors

the dissociation. This is expected: the binding of biotin to
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streptavidin is facilitated through numerous H-bonds and

over polar interactions. As such, water favorably solvates

both biotin and streptavidin and an energetic penalty is paid

when displacing the water during the binding process. In

this case, we find that the changes in the energy of solvation

and of the internal energy ΔE
internal

more or less cancel

out, indicating that binding is largely entropy-driven. At

first glance, this is surprising, since isothermal titration

calorimetry (ITC) of biotin-streptavidin shows significant

enthalpic binding contributions [95, 96]. However, we do

not take the conformational transition of the streptavidin

binding pocket into account.

Prior computational studies suggest a ΔGof−26.6 kcalmol
−1

for the binding of biotin into the closed conformation of

streptavidin [85]. This indicates that our result is in good

agreement with literature. To improve the agreement with

ITC measurements, the conformational changes of the

binding pocket should be included.

4.4.7 Further steps

In this tutorial, we obtained a value for the binding of biotin

into the closed conformation of the streptavidin binding

pocket. Investigating the effect of different conformations

on the binding affinity can be achieved by performing molec-

ular dynamics simulations of the complex and/ormonomers,

followed by GIST analysis onmultiple cluster representatives.

Including the effect of lid closing in the binding process may

require free energy calculation methods such as umbrella

sampling. For faster calculations, consider using smaller

GIST grids focused on the binding pocket, or rotating the

solute molecule along its principal axes to fit the cuboid

grid more exactly; note that such adjustments should be

made before the MD simulation, as rotating the trajectory

compromises the periodic box information.

5 Recent developments
In recent years, several updates to the original GIST imple-

mentation have been published. The basic functionality of

the program, however, has not been changed. In this chap-

ter, we will shortly present each of those updates.

5.1 GPU implementation
In reference [14], a GPU implementation of the energy cal-

culation was presented, which typically increases the speed

by 1–2 orders of magnitude. If cpptraj is compiled with GPU

support, the energy calculation uses the GPU automatically,

without any additional input. However, PME-GIST is not sup-

ported on the GPU, and no GPU code will be used when spec-

ifying pme.

5.2 PME implementation
In reference [4], a PME implementation of the GIST energy

was presented. For typical systems, this implementation is

slightly slower than GPU-GIST, but much faster than the orig-

inal CPU code. Furthermore, PME-GIST offers the best agree-

ment between GIST energies and those observed in a classi-

cal MD simulation. To run PME-GIST, the pme flag to the gist
command can be used in cpptraj. The output will contain

two additional columns: PME_dens and PME_norm. They con-
tain the potential of solutemolecule and solvent evaluated at

the solvent positions and divided by two. Furthermore, the

Eww and Esw columns are also computed using PME, and are

reported as usual. For typical use cases, we recommend us-

ing Eww and Esw over the PME column.

5.3 MPI parallelization
The most recent addition to GIST is MPI parallelization of

both energy and entropy calculations [90]. Since the MPI

parallelization is orthogonal to the other improvements, it

can be used with both PME or GPU accelerated GIST.

5.4 GIST with non-water solvents
In references [5, 11, 14], an extension of GIST to solvents

other than water is described. To run a GIST calculation

in a solvent other than water, use the solute flag with a

cpptraj selection mask to select the solute molecule (e.g.

solute :1-5 if the first five residues are the solute). All other
molecules will be treated as solvent. If there are multiple

solvent species, also use the solventmols flag as described

in Section 5.5.

The code will automatically choose three atoms per solvent

species to define the solvent orientation, and print this

selection to the output. Sometimes, however, the automatic

selection is not optimal. For instance, in methanol one can

either incorporate the C–H bonds or the O–H bond in the

selection. The latter is probably more relevant since it can

incorporate hydrogen bonding effects. Assuming that the

alcohol hydrogen atom is called H1, this could be specified

as follows:

Cpptraj

gist gridcntr <x> <y> <z> \
griddim <Nx> <Ny> <Nz> gridspacn <val> \
solute ^1 rigidatoms O1 H1 C1

Here, solute ˆ1 defines residue 1 as the solute. The

rigidatoms O1 H1 C1 keyword specifies atoms (e.g., in

methanol solvent) to define the solvent’s orientation, with

O1 being the central atom.
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5.5 GIST with salt-water mixtures
In reference [3], an extension of GIST was presented that

can use salt-water mixtures as a solvent. This allows treating

salting-out effects, although it was shown that the salting-

out coefficient is over-predicted by GIST because of the

first-order entropy approximation. Generally, GIST should

be able to treat arbitrary solvent mixtures as long as each

solvent molecule is sufficiently rigid.

In the cpptraj implementation of GIST, the solute keyword

specifies which components of the system are treated as a

solute molecule. Everything else will be treated as solvent. If

the solvent contains more than one molecular species, a list

of solvent molecule names (i.e., “solventmols WAT,NA,CL”)
must be specified. For each solvent molecule in this list,

densities (e.g., g_mol_NA) and energies (e.g., Eww_mol_NA)
will be computed and written to .dx files. Note that, e.g.,

Esw_mol_NA contains the interactions of every “NA” solvent
molecule with the solute molecule, and Eww_mol_NA contains
the interactions among “NA” solvent molecules as well as

their interactions with all other solvents, divided by 2 to

account for double counting. The entropy will be computed

using only the density of the first solvent molecule.

For instance, a GIST calculation in salt water, including the

first-order water entropy, can be run as follows:

Cpptraj

gist gridcntr <x> <y> <z> \
griddim <Nx> <Ny> <Nz> gridspacn <val> \
solute !(:WAT,NA,CL) solventmols WAT,NA,CL

The current implementation of the entropy calculation

in cpptraj requires at least 3 atoms in the main sol-

vent. Note that the calculation of the reference value is

complicated by the introduction of additional solvents.

For an overview of how to correctly handle such calcu-

lations, refer to reference [3]. Additionally, to compute

the first-order entropy of the ions, as well as an approxi-

mate second order entropy, Python code is available on

https://github.com/liedllab/second-disorder.

6 Visualization
6.1 Visualizing DX files
A minimal PyMOL script to visualize a dx file is shown

here. This loads an input structure from a file named

streptavidin.pdb and visualizes the oxygen density at an

isolevel of 2 (i.e., twice the reference density). The expected

output is shown in Figure 7.

PyMOL

load output/streptavidin/gist.pdb, streptavidin
as surface
color gray70, streptavidin

load output/streptavidin/gist-gO.dx, gO
isomesh gO_high, gO, 2
color slate, gO_high

A more sophisticated visualization, including the energy, en-

tropy, and free energy of removing a single water solvent

molecule, is found in Figure 8.

Figure 7. Oxygen density around streptavidin at an isolevel of twice
the reference density (i.e., bulk)
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(a) GIST solvent energy (based on Esw + 2Eww ).

(b) GIST solvent entropy

Figure 8. Biotin in the streptavidin binding pocket, with isosurfaces
based on the GIST calculation on the holo structure. Isolevels shown

are (±) 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 kcalmol
−1

Å
−3

, except for

the positive energy, where they are divided by two to visually account

for its overall lower density. The negative solvent energy is shown in

green, positive solvent energy in red and negative entropy in blue.

Only voxels within 4Å of biotin are shown.

6.2 Solvent Accessible Surface (SAS)
The solvent accessible surface (SAS) represents the interface

between regions that are occupied by the solute molecule

and those which can be accessed by the solvent. GIST pro-

vides a very natural way of creating a SAS using an isosurface

of the oxygen density gO. At a very low isovalue, an isosurface

of the water’s oxygen or hydrogen shows areas the water

can reach, essentially creating a SAS. Here, the SAS was gen-

erated from a simulation of water around streptavidin with-

out biotin, leaving the binding site solvent-accessible. The

expected output is shown in Figure 9.

PyMOL

load ../gist.pdb
load ../gist-gO.dx
isomesh sas, gist-gO, 0.1

Figure 9. SAS for streptavidin focused on the binding pocket

6.3 Defining the binding pocket
Specific regions in a protein can be defined to calculate the

thermodynamic properties for that region. This is especially

significant when calculating the properties of water that will

be expelled when a ligand binds to the protein. For example,

voxels that are located within the binding pocket can be de-

fined using a ligand solute molecule and a distance criterion.

In section 4.4.6, we show how to integrate over regions such

as the binding pocket. To visualize the considered region, we

can create a OpenDX file where we set the considered voxels

to 1 and all others to 0. Here, we show what this would look

like for a radius of 3.5 Å around the heavy atoms of biotin.

Python
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import gisttools as gt
def select(traj, sel):

"""
Slice a Trajectory by selection mask.
"""
return traj.atom_slice(traj.top.select(sel))

### Load GIST data
compl = gt.gist.load_gist_file(

'complex/gist/gist.dat',
struct='complex/gist/gist_nowat.pdb')

### Define ligand atoms and find voxels around them
rmax = 3.5
biotin_mask = 'resname BTN and not element H'
btn = select(compl.struct, biotin_mask).xyz[0] * 10.
ind, _, _ = compl.distance_to_spheres(btn, rmax)

### Set voxels within 3.5A of biotin to 1, write out dx file
compl.loc[ind, 'BP'] = 1
compl.save_dx('BP', 'binding_pocket.dx')

Figure 10. Volume of streptavidin defined around 3.5Å of biotin.

7 Theory
GIST is an implementation of inhomogeneous fluid solvation

theory (IST) [35] that discretizes the free energy of solvation

ΔAsolv on a three-dimensional grid. It was first devised by

Nguyen et al. [1] and its implementation in cpptraj was thor-
oughly described by Ramsey et al. [6]. Here, we only provide

a short overview of the theory behind GIST. For more techni-

cal information (such as implementation details), we recom-

mend one of the more recent publications on developments

in GIST [4, 14, 90].

7.1 On Thermodynamic Quantities
The PV difference between the Helmholtz and Gibbs free en-

ergies is negligible for condensed phase systems at biological

and STP conditions. Hence, in the literature, the terms ΔGsolv

and ΔAsolv are often used interchangeably. The TΔS columns

in GIST output are labeled dTS for brevity.

7.2 Solvation Entropy
IST expresses the free energy of solvation in terms of the

solvent density in a coordinate system defined by the solute

molecule. The solute molecule is kept fixed in space, follow-

ing the standard solvation process established by Ben-Naim

[97].

The entropy can be approximated as an infinite ex-

pansion of correlations of increasing order. In a slightly

simplified view, the first order is the log solvent density

ln
(
gsw (r,ω)

)
at each position r and orientation ω. The

first-order entropy omits all solvent-solvent (and higher)

correlations, while the solute-solvent correlation is taken

into account because the coordinates are relative to the

solute. Thus, it is called the solute-water entropy Ssw . Note

that this definition is different and more direct than the one

used originally by Ben-Naim [97], as recently discussed in

[98]. The solvent density is expressed relative to the bulk

density ρ
0
. The entropy integral is also normalized by 8π

2
,

which is the volume of the orientational space. In bulk or at

a high distance to the solute molecule, the quantity gsw (r,ω)
approaches one, which leads to zero first-order entropy.

Therefore, no reference entropy is needed unless there is

a numeric bias, e.g., when the MD frames are statistically

dependent because the time between them is insufficient.

ΔSsolv ≈ ΔSsw ≡ −R ρ
0

8π2

∫
gsw(r,ω) ln gsw(r,ω)drdω (6)

7.2.1 Entropy Calculations in cpptraj

In cpptraj, the calculation of solvation entropy is handled by
two methods.

In the firstmethod, the solvation entropy is broken down into
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translational and orientational contributions.

ΔSsolv = ΔStrans + ΔSorient (7)

This is exact assuming that the distribution of the orientation

ω is constantwithin a voxel k, butmight converge slower than

computing the entropy from the combined space (see below).

The second method directly calculates the solvation entropy

by evaluating the six-dimensional integral (3 for position and

3 for orientation).

A first nearest neighbor (NN) approach is used to evaluate

the entropy based on the orientational and translational dis-

tributions. The distributions are computed relative to a ho-

mogeneous distribution of solvent molecules, given a bulk

density ρ
0
. The average entropy contributions per solvent

molecule in voxel k are calculated as

S
trans

k = −R

γ +
1

Nk

Nk∑
i=1

ln gNN,i(r)

 , (8)

S
orient

k = −R

γ +
1

Nk

Nk∑
i=1

ln gNN,i(ω)

 , (9)

and

S
six

k = −R

γ +
1

Nk

Nk∑
i=1

ln gNN,i(r,ω)

 , (10)

where Nk is the number of water solvent molecules found in

voxel k, γ is Euler’s constant accounting for the bias of the

naive entropy estimator, and gNN is the nearest neighbor es-

timate of the density.

7.3 Solvation Energy
The solvation energy is calculated from the water-water and

water-solute interactions from the force field.

ΔEsolv = ΔEsw + ΔEww (11)

The solute-solvent energy Esw can be expressed in terms of

the solvent density and the potential Usw(r,ω) induced by the
solute molecule. In practice, Esw is computed as the expecta-

tion value ⟨·⟩ of the pairwise force field energy Uij between

all solvent molecules in voxel k and all solute atoms.

ΔEsw(r) ≡
1

8π2

∫
gsw

(
ω|r

)
Usw (r,ω)dω

ΔEsw,k =

〈
solvent,k∑

i

solute∑
j

Uij

〉
(12)

To localize Esw on the three-dimensional grid, every energy

term is assigned to the voxel k holding the solvent, and the

expectation value in Equation 12 is computed per voxel.

Similar to the entropy integrals, the solute-water solva-

tion energy decays with increasing distance to the solute

molecule. Hence, it can be approximated by local spatial

integrals. The solvent-solvent energy Eww is computed simi-

larly. It can also be expressed in terms of density functions,

but is practically computed as a sum over solvent-solvent

interactions per voxel k. In contrast to Esw , Eww does not tend

to zero in bulk. Therefore, a reference corresponding to the

average energy of a bulk water solvent molecule needs to

be subtracted. The referenced solvent-solvent energy will

be denoted as E
corr
ww .

ΔE
corr
ww (r) ≡

(
1

8π2

)2

ρ
o

∫
gsw(ω|r)

×
[
gsw(r′,ω′

)− g
0
ww(r,ω, r′,ω′

)

]
× Uww(r,ω, r′,ω′

)dωdr′dω′

ΔE
corr

ww,k =
1

Nk

〈
solvent,k∑

i

solvent∑
j/=i

Uij

〉
−

〈
E
bulk
ww

〉
(13)

7.3.1 Interpreting the energy values

When computing the total Eww of the system, double-

counting of interactions must be avoided. The total

solvent-solvent energy of the system is as follows:

ΔEww =

voxels∑
k

E
corr

ww,k

2
(14)

However, when water is replaced from a small region R of

interest, such as a single water solvent molecule, almost all

interactions are with water solvent molecules outside this re-

gion. Therefore, there is no double counting, and the full

solvent-solvent energy should be used.

ΔE
R
ww =

voxels in R∑
k

E
corr

ww,k (15)

When the region R comprises more than one solvent

molecule, interactions within this region are double-counted

while interactions to the outside are not. This could be

solved using the solvent-solvent energy between each pair

of voxels Eww,k l:

ΔE
R
ww = 2

voxels in R∑
k

E
corr

ww,k −
voxels in R∑

k

l>k∑
l

Eww,k l

 (16)

While this is supported by the standard GIST implementation

(using the doeij flag), it is rarely done due to the large size of
the Eww,k l matrix. Integrating GIST values over the whole grid

corresponds to a process where all the solvent is removed

into bulk. However, when integrating over a small region,

this process is less well-defined, since it is unclear to what ex-

tent the remaining solvent would reorganize. This depends

on the local environment and on what the solvent would be
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replaced by. Therefore, the effect of reorganization must be

judged for each case individually. One way to treat reorga-

nization is an end-state approach as shown in the tutorial:

all states before and after solvent reorganization are consid-

ered. In the tutorial, this corresponds to the solvation of bi-

otin and streptavidin separated (initial states) and in complex

(end-state). Note that all solvent contributions must be con-

sidered to obtain thermodynamically accurate results in such

a case. In practice, this therefore requires the integration

over the whole grid or at least all voxels with solvent prop-

erties different from bulk (i.e. setting a large cutoff).

7.3.2 PME energy

In the original version of GIST, the energies are calculated

based on the minimum image convention. In PME-GIST, the

electrostatic energy Eelec is calculated using the particlemesh

Ewald (PME) method, which yields energies that are highly

consistent with the AmberMD engine [4]. The Lennard-Jones

part Elj is computed separately in direct space.

Etotal = Eelec + Elj (17)

During the electrostatics calculation, the system is treated

as periodic and the energy is split into a short-range term

Edir, which is calculated in direct space using a distance cut-

off, and a long-range term Erec, which is calculated in recipro-

cal space. Additionally, there is a correction term Eself (called

Ecorr in the original publication [4]), which corrects for the self-

interaction of each solvent molecule in the reciprocal term.

Eelec = Edir + Erec + Eself (18)

The short-range Lennard-Jones contribution is computed in

the direct space using a distance cutoff. Furthermore, a long-

range correction term is computed that accounts for the con-

tributions above this cutoff assuming a homogeneous distri-

bution of particles.

Elj = Elj, short + Elj, corr (19)

For a more detailed description of the PME-GIST imple-

mentation and the pairwise decomposition of the PME en-

ergy, we refer to the original publication [4].

8 Checklists, Cheat Sheets and
Flowcharts

SIMULATION SETTINGS
Suggested values

□ Simulation time: 100ns

□ Number of analyzed frames: 100 000

□ Restraints: 2.5 kcalmol
−1

Å
−2

or greater on solute

heavy atoms.

□ Time between stored water configurations: 2 ps

CHOOSING AN ENERGY METHOD
□ CPU: slow, most general (can write out Eij matrices)

□ CPU, PME: highly consistent with Amber MD, fast

□ GPU, direct space: fastest for a single CPU core

All methods profit from MPI-parallelization. PME with

multiple CPU cores (>4) is usually the fastest method.

OBTAINING ABSOLUTE ΔAsolv
□ Check the radial convergence (see Fig. 3)

□ Choose a sufficient distance cutoff

□ Choose an optimal Eww reference value

□ Tweak simulation length and number of frames to ob-

tain smooth free energy contributions and unbiased

(i.e., zero) bulk entropy.

□ If necessary, subtract an entropy reference

HANDLING CONVERGENCE PROBLEMS
□ Insufficient sampling leads to noise in the results.

Run longer simulations.
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THE CPPTRAJ GIST ACTION
Options
Various flags and options can be provided when running a GIST calculation in cpptraj. A list of possible and required

options is provided here:

I/O Options
name <dataset name> Name for output datasets in cpptraj.

prefix <prefix> Output file name prefix. Default is ’gist’.

ext <extension> Output grid file name extension. Default is ’.dx’.

out <file> Name of the main GIST output file. If not specified set to ’<prefix>-output.dat’.

info <file> Name of main GIST info file. If not specified info is written to standard output.

floatfmt <fmt> Format for floating point values in GIST output file. Options are ’double’, ’scientific’ or

’general’. Default chooses ’fixed’ or ’scientific’ automatically.

floatwidth <val> Width of floating point values in GIST output file. Default is no width restriction.

floatprec <val> Precision of floating point values in GIST output file. Default is the system default.

intwidth <val> Width of integer point values in GIST output file. Default is no width restriction.

doeij Output the triangular matrix representing the water-water interactions between pairs

of voxels. Not supported with PME or GPU GIST.

Grid Options
gridcntr <xval> <yval> <zval> Coordinates in Å of the center of the grid. Default is 0.0 0.0 0.0

griddim <xval> <yval> <zval> Grid dimensions in voxels along each coordinate axis. Default is 40 40 40.

gridspacn <val> Grid spacing (linear dimension of each voxel) in Angstroms. Default is 0.5 Å.

rmsfit <mask> If specified, grid will be rotated and translated to follow the atoms selected by mask.

GIST Calculation Options
skipE Skip all the energy calculations (cannot be specified with ’doeij’)

skipS Skip all the entropy calculations.

refdens <val> Reference density of bulk solvent, used in computing gO, gH, and the translational en-

tropy. Default is 0.0334 molecules/Å
3
.

temp <val> Temperature of the input trajectory.

noimage Disable distance imaging in energy calculation.

neighborcut <val> Cutoff in Å for determining solvent neighbors. Default is 3.5 Å, typical for water O-O.

oldnnvolume Use the old reference volume for the nearest neighbor entropy.

nnsearchlayers <val> Layers of neighboring voxels considered in nearest neighbor search. Higher valuesmay

improve entropy convergence for little sampling or fine grid spacings, but increase the

calculation time. Default is 1.

PME Options
nopme Do not use particle mesh Ewald for the non-bonded calculation. This is set on default.

pme Use particle mesh Ewald for the non-bonded electrostatics calculation. The van der

Waals energy will be calculated using a long-range correction for periodicity.

cut <val> Direct space cutoff for pme. Default is 8.0 Å.

dsumtol <val> Direct sum tolerance used to determine Ewald coefficient. Default is 0.00001.

ewcoeff <val> Ewald coefficient in 1/Å.

erfcdx <val> Spacing to use for the ERFC splines. Default is 0.0002Å.

skinnb Used to determine pairlist atoms (added to cut, so pairlist cutoff is cut + skinnb); in-

cluded in order to maintain consistency with results from sander.

ljswidth <val> If specified, use a force-switching form for the Lennard-Jones calculation from <cutoff>-

<val> to <cutoff>

order <val> Spline order for charges.

nfft <nfft1>,<nfft2>,<nfft3> Explicitly set the number of FFT grid points in each dimension. Will be determined

automatically if not specified.
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THE CPPTRAJ GIST ACTION
Further Options
Solvent Options
solute <mask> Selection mask for the solute. All other molecules will be solvent. If this is omitted, the

standard solute/solvent assignment will be used.

solventmols <mols> Comma-separated list of solvent molecules residue names. Energies will be computed

per solvent molecule. For the entropy, only the first solvent will be used. Use this for

calulations with more than one solvent of interest, e.g. for ions.

rigidatoms <c> <a1> <a2> Specifies the molecular orientation for the entropy calculation from a central atom and

two additional atoms, e.g. O H1 H2 for water. By default, a simple heuristic will be used.

Use this option if the automatically chosen atoms are collinear or do not represent the

orientation well.

nocom Do not use the center of mass to define themolecular position. Instead, use the first atom

in rigidatoms. Use this flag to restore the behavior of old GIST runs.

Order Calculation Options
doorder Calculate the water order parameter [reference] for each voxel

nopl Do not use pair list for order calculation

plcut <val> Pair list cutoff for order calculation. Default is 10Å

Output
GIST calculations write a variety of data sorted by voxel into an output file specified by the ’out’ keyword. Some of the

output data is also automatically written to ’open data explorer’ (.dx) files for convenient visualization in software such as

VMD or PyMOL. Note that some columns will be written out both with ’_norm’ and ’_dens’ suffixes, referring to normaliza-

tion by solvent molecule or voxel volume respectively. The following columns can be found in the output file:

Name Keyword Description

index Voxel indices

x, y, z Coordinates of the voxel centers

pop Population of solvent in voxel over entire simulation

gX For each element in the main solvent, the number density of atoms found in the voxel, in

units of the bulk density. If the same element occurs multiple times, the bulk density is

scaled accordingly.

g_mol_Y [solventmols] Density of every solvent species Y. Scaled by rho0.

Esw Mean solute-solvent interaction energy.

Eww Mean solvent-solvent interaction energy.

Esw_mol_Y [solventmols] Mean solute-solvent interaction energy for solvent species Y.

Eww_mol_Y [solventmols] Mean solvent-solvent interaction energy for solvent species Y.

PME [pme] Solvent PME energy.

U_PME [pme] Solvent PME energy.

dTStrans First order translational entropy.

dTSorient First order orientational entropy.

order (if doorder was specified) Average Tetrahedral Order Parameter [99].

dipolex x-component of the mean solvent dipole moment density

dipoley y-component of the mean solvent dipole moment density

dipolez z-component of the mean solvent dipole moment density

dipole Magnitude of mean dipole moment density (polarization).

neighbor Mean number of solvent molecules neighboring the solvent molecules found in this voxel.
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Prepare solvated 
solute box

Run restrained MD 
simulation

Neat solvent box for 
accurate referencing

Run unrestrained MD 
simulation

1. MD Simulation
❑ Add missing atoms
❑ Check protonation states

❑ Select force field
❑ Add solvent 

At least 10-15Å buffer or 
3 solvation layers depending on 
solvent

❑ Optional: create neat 
solvent box and determine 
NN entropy bias

❑ Restrain heavy atoms for 
solute simulation 
Harmonic restraint potential  
𝑉𝑟 𝑥 = 𝑘𝑟 ⋅ Δ𝑥2

with kr =10 - 100 kcal mol-1 Å-2

❑ Run simulation
≥10 ns (100 ns ideal)
≥ 10 000 frames (100 000 ideal)

❑ Confirm rigidity of solute 
heavy atoms:  Suggested 
RMSD ≤ 0.1Å

2. Prepare GIST settings
❑ Determine reference 

water density 𝜌0
Calculate reference from neat 
simulation or use tabulated 
value for the solvent model.

❑ Determine grid size
a) binding site                       
b) full system                        
c) 10 Å around region of 
interest 

❑ Determine voxel number
For each cartesian direction, 
the number of voxels necessary 
is the length of the region of 
interest divided by the voxel 
side length (0.5 Å ).

3. Run GIST in cpptraj

Define region of 
interest

Calculate number of 
voxels necessary

Reimage and center 
MD trajectory

Set voxel number per 
axis

Calculate reference 
density 𝜌0 of neat 

solvent

Run GIST

Prepare solute 
structure

Solute 
Trajectory

Calculate reference 
water-water energy 

𝐸𝑤𝑤

gist.dat

Neat 
Solvent 

Trajectory

Minimization & Equilibration

Save solute 
coordinates of first 

frame

gist.pdb 𝐸𝑤𝑤,𝑟𝑒𝑓𝜌0

Solute 
structure

Optional

Define grid center if 
solute/region is not 
centered on origin
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4a. Postprocess & Analysis
❑ Determine 𝐸𝑤𝑤,𝑟𝑒𝑓

Use tabulated value, calculate 
from reference simulation or 
auto-reference from outer grid 
voxels, if the grid is large enough 
(> 3 solvent layers)

❑ Load gist.dat with gisttools
A pdb structure of the solute 
without water is necessary for 
this. Preset 𝐸𝑤𝑤,𝑟𝑒𝑓 or use the 
auto-referencing. 

❑ Check convergence of 
thermodynamic properties 
– integrated values should 
approach a fixed value with 
distance from the region of 
interest (see Figure 4)

❑ Optional: edit voxel data
For example, apply the empirical 
entropy correction  factor of 0.6.

❑ Use “norm“ data to 
compare voxel to voxel

❑ Use “dens“ data to integrate 
over voxels or for 
visualization purposes

4b. Visualization (optional)
❑ If properties were modified 

or newly created, output 
density files for 
visualization

❑ Visualize .dx files
e.g. with PyMOL or VMD

gist.datgist.pdb

Load with gisttools in python

Check convergence of 
Δ𝐸𝑤𝑤 , Δ𝐸𝑠𝑤, 𝑇Δ𝑆, Δ𝐴𝑠𝑜𝑙𝑣

𝐸𝑤𝑤,𝑟𝑒𝑓

Converged?

Common fixes:
 Δ𝐸𝑤𝑤: Change 𝐸𝑤𝑤,𝑟𝑒𝑓

𝑇Δ𝑆: reference entropy
 Δ𝐸𝑠𝑤:  More  sampling

"norm" data "dens" data

Compare voxels on a per-
solvent basis

Integrate over grid volumes 
to calculate thermodynamic 

data

Output .dx files

IsosurfacesVolumes

Mesh grids

Load .dx files into 
visualization software

Visualize thermodynamic 
densities

Edit voxel data optional

yes

no

Isodots
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